

Digital soil data as input for spatial modelling of pesticide losses

Kristin Piikki & Mats Söderström, Swedish University of Agricultural Sciences (SLU), Sweden

- 1. Markdata.se a free web application for farmers
- 2. Digital soil map of Sweden (DSMS)
- 3. Detailed mapping by proximal soil sensors

Markdata.se A web application for practical use of soil data

Swedish example of implemented pedometrics

for precision agriculture

Spatial Soil Properties Database: **DSMS**

2.4 million ha of arable land

More info on DSMS later.....

Free decision support application:

Markdata.se

Uploading user's data: Soil sampling

If available:

Often one sample per 3 ha

Automated algorithm: Maps.R.Interactive

DSMS

Map based on local data only (ordinary kriging)

Adapted
DSMS 1
(residual kriging)

Adapted
DSMS 2
(regression kriging)

Four maps

Percent of 403 farms, where the map had the lowest MAE

MAE = Mean Absolute Error

Validation

Use the locally best map

Summary

- An algorithm was developed for local adaptation (downscaling) of a national digital soil map.
- Implemented in a free web-based decision support application for precision agriculture (markdata.se).

What is DSMS (the digital soil map of Sweden)?

DSMS properties

Format: Raster

Cell size: $50 \text{ m} \times 50 \text{ m}$

Extent: 2.4 million ha

>90% of the arable land! Except organic soils

Attributes: Topsoil clay content

Topsoil sand content Topsoil silt content

Topsoil FAO texture class

<u>License:</u> CC-BY

<u>Download site:</u> http://bit.ly/DSMS_download

Data

Lattice point location data:
Texture and organic matter
(OM) content in 13,600 soil
samples taken in a ~1 km²
square grid

Clustered point location data: Texture and OM content in 24,000 soil samples at 544 farms: 1 sample / 3 ha

Polygon data
Field boundaries and field classifications

Covariates

Elevation ------Relative

Gamma radiation data

Th, proximal 0.2 m height 24 m spacing

Th, airborne 30 m height 100 m spacing

Th, airborne 60 m height 200 m spacing

Mapping strategy

Mapping strategy

4 Applying pedotransfer functions

DSMS Secondary raster layers

- -Buffering capacity
- -Target pH etc....

Clay content at one 55 ha farm...

Detailed local soil maps derived by proximal sensing

Lab analyses are:

- More expensive
- Less uncertain

≈ 640 :- /st

Proximal sensor measurements in situ are:

- Less expensive
- More uncertain

Foto: Christina Öhman, SLU

Gamma spectrometry

Registers:

 Natural gamma radiation of ⁴⁰K, ²³⁸U och²³²Th in the topsoil

Can be related to:

- Soil parent material
- Soil texture
- Cadmium content in some areas

Excellent for topsoil clay content

Electromagnetic induction sensor

Registers:

 Apparent electrical conductivity and magnetic susceptibility over multiple depth

Can e.g. be related to:

- Soil texture
- Moisture content
- Salinity
- Organic matter content

Any relationships are site-specific

Hydraulic probe

Registers depth profiles!

Registers:

- Apparent electrical conductivity
- Insertion force
- visNIR reflectance spectra

Can be related to:

- Soil texture
- Moisture content
- Salinity
- Organic matter content

Vis-NIR/MIR spectroscopy

Suitable for small plots

Registers:

visNIR reflectance spectra

Can be related to:

- Soil texture
- Moisture content
- Organic matter content
- Other properties....(?)

PXRF

Registers:

 X-ray fluorescence of elements from Mg →

Can be related to:

 Total concentration of many elements

Organic matter content 0-20 cm

Example:

- Watershed of 800 ha
- 50 soil samples * 3 depths
- 800 000 registrations of ECa and gamma radiation
- Digital elevation model from RTK-GPS
- Multivariate prediction modelling

Clay content 0-20 cm

Clay content 20-50 cm

Clay content 50-80 cm

Summary

DSMS is a free map of topsoil texture with
 50 x 50 m spatial resolution.

- Markdata.se is one example of an application that transfers soil data to useful information available for public use.
- More detailed spatial soil information and information on subsoil properties can be produced by proximal sensing.

More info: kristin.piikki@slu.se or mats.soderstrom@slu.se