Monitoring long-term trends of pesticides in surface waters

Jenny Kreuger, Bodil Lindström, Martin Larsson, Mikaela Gönczi Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden

SETAC Conference Basel, 2014-05-13

Pesticide monitoring – many different reasons

- To investigate pesticide fate in the actual field situation
 - Go beyond the the well-controlled conditions common for most environmental fate studies
- Investigate the development over time
 - Follow-up on regulatory decisions (eg drinking water directive, WFD)
 - Follow-up on the registration process and policy changes
- Develop scientific understanding
 - Calibration/validation of exposure models (regional/catchment scale)

The Vemmenhög catchment

- Monitoring of pesticides in stream water from an agricultural catchment in southern Sweden
- Started in 1990, now >20 years of data

Results long-term monitoring

A 90% reduction in pesticide concentrations

Average total pesticide concentration May-Sept 1992-2012

Avoid point sources – education of farmers

- Safe storage of pesticides
- Safe places for filling and cleaning spraying equipment
- No "beauty-treatment" on farmyards

One mitigation option applied was the use of safe places for filling and cleaning spraying equipment (e.g. biobeds)

Pesticides in water from

Diffuse sources

 Processes influenced by soil and weather conditions, the intrinsic properties of the pesticide, management practices (EU regulation 1107/2009)

Semi-point and point sources

- Unregulated applications, e.g. on surfaces with no active soil such as farmyards, or practices, e.g. effluents from greenhouses
- Spillage during application, filling and cleaning spraying equipment, waste disposal, accidents (EU directive 2009/128)

Current Swedish pesticide monitoring program in agricultural areas – from 2002

Surface water:

- Västergötland (O18)
- Östergötland (E21)
- Halland (N34)
- Skåne (M42)
- Skivarpsån
- Vegeå

Rivers (100-500 km²)

Streams

draining

catchments

 $(8-16 \text{ km}^2)$

small

Objective: Feed-back on the national risk-reduction program and the regulatory process, as well as the basis for information to farming community

Stream water sampling in catchments

Automatic water sampling

 Time paced weekly composite samples (1 sub-sample each 90 min during the week) during main growing season

 During later years also bi-weekly composite samples during winter season – 2 catchments

Continuous water flow measurements

Catchment inventory

- Yearly interviews with farmers in the catchments on the use of pesticides (& crops and nutrients) – which pesticides, when, where and how much
- Gives good background for interpretation and method development

Analytical program development

- New pesticides enter the market, old ones disappear
- The analytical program needs to be flexible
- Selection criteria:
 - Most heavily used (corresponds to ca. 90% of sold amounts in Sweden) and sprayed on large acreages
 - Superseded though still frequently detected
 - Included in Water Framework Directive (WFD)
 - Aquatic toxicity
 - List updated each year in co-operation with regulatory authorities and feedback from farmer interviews

Analytical methods

- On-line LC-MS/MS for a broad range of pesticides
 - Method description Jansson & Kreuger, 2010, J. AOAC Intern., vol 93, 1732-1747
- GC-MS for the most non-polar compounds
- Currently including ca 130 different pesticides in the monitoring program, incl. some degradation products
- LOD/LOQ levels are at the ng/l-level for most pesticides

Summed weekly (summer) and biweekly (winter) average concentrations over a growing season (2012/2013)

Desticide concentrations in the catchments (streams) 2002-2012

Annual median concentration - no trend during the past 11 years

Metazachlor – declining concentrations in surface water during the last 3 years due to lower doses being applied

90th percentile concentration exceeded the Swedish EQO during 2003, 2008 and 2009

Metazachlor was used in two different products:

Butisan S (ca 1.5 kg a.i./ha) until 2008, though old stocks still used in 2009 Butisan Top (ca 0.75 kg a.i./ha, max 1 kg a.i./ha during 3 y) from 2009

RISK

Exposure

Toxicity

Swedish Environmental Quality Objectives (EQO) for surface waters (examples) www.kemi.se

Pesticide	EQO (µg/l)	Pesticide	EQ <i>O</i> (μg/l)
fluroxypyr	100	aclonifen	0.12
glyphosate	100	tribenuron-methyl	0.1
clopyralid	50	pirimicarb	0.09
bentazone	30	metribuzin	0.08
mecoprop	20	sulfosulfuron	0.05
metamitron	10	triflusulfuron-methyl	0.03
MCPA	1	metsulfuron-methyl	0.02
fluazinam	0.4	terbuthylazine	0.02
isoproturon	0.3	rimsulfuron	0.01
fenpropimorph	0.2	diflufenican	0.005
metazachlor	0.2	esfenvalerat	0.0001

Risk-index based on monitoring data

 using a modified version of the US Pesticide Toxicity Index (PTI)

$$PTI = \sum_{i=1}^{n} \frac{Conc_{i}}{EQS_{i}}$$

- Conc_i = Pesticide concentration _i
- EQS_i = EQS or national EQO for the pesticide_i
- n = Number of pesticides

Development of PTI in the four monitoring catchments 2002-2012

Including only pesticides with LOD below EQO during 2002-2012

Including also pesticides with LOD above EQO (mainly pyrethroids)

Development of PTI in the Vemmenhög catchment 1992-2012

PTI - absolute values

PTI – log-scale

Following a 90 % decrease of measured pesticide concentrations in the stream, also the potential "risk" for aquatic organisms (measured as PTI) has decreased since mitigation measures started in the mid-90's - by 1-2 orders of magnitude!

Conclusions

- Results demonstrate a 90% decline in pesticide concentrations in surface waters when implementing best management practices and applying pesticides according to regulation
- Today many pesticide are detected in surface waters below EQO values, although some are frequently detected above the 0.1 μ g/l and a few also quite regularly above the EQO (i.e. pesticides with low EQO values)
- Much more difficult to reduce non-point source pollution the importance of transport pathways in the agricultural landscape varies between different regions
 - i.e. mitigation options varies between regions and include a number of different options (e g buffer zones, drift reduction nozzles, timing of application, doses, Integrated Pest Management - IPM)

Questions?

Acknowledgement:

- The national pesticide monitoring programme is funded by the Swedish Environmental Protection Agency
- Information about pesticide research and monitoring at SLU www.slu.se/ckb (Centre for Chemical Pesticides)
- Publications downloadable from: http://www.slu.se/ckb/miljoovervakning/publikationer
- Data downloadable from: <u>http://jordbruksvatten.slu.se</u>

jenny.kreuger@slu.se

