Assisted thinning operations using Artificial Intelligence and Augmented Reality

García-Pascual, Borja

Prof. Kärhä, K. & Acuna, M.

20.06.2024

UNIVERSITY OF EASTERN FINLAND

borja.garciapascual@luke.fi

borja.garcia.pascual@uef.fi

- 1. Introduction
- 2. Objectives
- 3. Materials and methods
- 4. What's next?
- 5. Conclusion

1. Introduction

- Tendency to overcut:
 - Operators can't know how many trees remain
- Operators can't see broken treetops
- They consider many factors during long periods of time
- Harvesting is mentally taxing

1. Introduction

- Tree marking improves productivity:
 - Bigger impact on novel workers
 - Levels novel and experienced
- Tree marking improves thinning quality
 - Less overcutting
- Huge cost of tree marking

1. Introduction

- New technologies can replace marking:
 - Remote Sensing (RS)
 - Artificial Intelligence (AI)
 - Augmented Reality (AR)
- Huge interest:
 - UNITE & Sintetic, IlmoStar...
 - Ponsse, Metsähallitus..

2. Objectives

Trial design

- Three types of plots:
 - 1. No assistance for the operator
 - 2. Trees selected by forester and marked
 - Trees selected by algorithm and marked
- Homogeneous Finnish forest conditions

Source: Deschutes Collaborative Forest Project (2015).

Trial design

- Plots of approx. 20x100m
- LiDAR and RGB scan of the forest before harvest (MLS and ALS)
- Measure trees manually:
 - DBH, height, tree species...
- Detect and select trees automatically

Tree detection

- Detect trees from dense LiDAR point cloud
 - SegmentAnyTree
 - 3DForest
 - TLS2Trees
 - ...
- Correct misclassified blobs of data
- Database of geolocated trees

Tree description

• Best fit circle

Source: Tampere Inverse problems group (n.d.).

Tree description

• Best fit circle

Tree selection

- Optimization algorithm that accounts for:
 - Tree characteristics
 - Desired tree density
 - Ecological parameters
 - Harvester accessibility

Eye tracking

- Track eye movement of workers during harvest
- Estimate stress levels and tiredness
- Compare between plots

3. Experimental design

4. What's next?

Tree matching

- LiDAR on top of harvester
- Locate machine using SLAM
- Detect trees in real time
- Match them with database of trees

Source: Finnish Geospatial Research Institute (n.d.).

4. What's next?

AR & human in the loop

5. Conclusion

- Move to closed-loop machine-human systems
 - More productive
 - More ergonomic
 - More sustainable
- Decreasing price of Remote Sensing
- Robotics advancing fast

Will robots scan the forest?

Source: Kalle Kärhä (n.d.).

Assisted thinning operations using Artificial Intelligence and Augmented Reality

García-Pascual, Borja

Prof. Kärhä, K. & Acuna, M.

20.06.2024

UNIVERSITY OF EASTERN FINLAND

borja.garciapascual@luke.fi

borja.garcia.pascual@uef.fi